HOLLOW CATHODE LAMP

FEATURES

Low detection limits

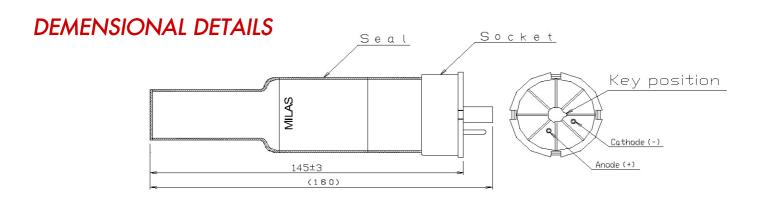
State-of-the-art manufacturing techniques ensure maximum stability and sharp emission lines enabling lowest possible detection level.

Low warm-up time

Lamp achieves its maximum stability level very quickly enabling immediate analysis. Even the most volatile elements such as lead and cadmium have short warm-up time.

Extended lamp life

Superior design, high quantity components and strict quality control ensures long serv9ce life of 5000mA hours of service life of lamps with all elements except for As and Se that have service life of 3000mA hours.


HOLLOW CATHODE LAMP WITH IRON ELEMENT

TECHNICAL SPECIFICATIONS

Elements	Wave length (nm)		Rated Current		Life	Window
			Normal	Max	(mA·hrs)	material
Ag	328. 1	338. 3	5	15	5000	Synthetic Quartz
Al	309.3	396. 2	7. 5	15	27	77
As	193. 7	197. 2	10	12	"	7
Au	242. 8	267. 6	10	20	,	"
В	249.8		10	20	"	"
Ba	553. 6	350. 1	10	15	"	7
Ве	234. 9		10	15 ⁻	"	//
Bi	223. 1	306. 8	10	15	″	7/
Ca	422. 7		7. 5	15	"	77
Cd	228. 8	326. 1	6	15	"	77
Со	240. 7	352. 7	10	15	"	"
Cr	357. 9	359. 3	7. 5	15	″	77
Cs	852. 1		10	15	77	"
Cu	324. 8	327. 4	5	15	"	"
Dy	404. 6	421. 2	10	15	"	"
Er	400.8	415. 1	10	15	"	″
Fe	248. 3	372. 0	10	15	"	"
Ga	294. 4	417. 2	10	15	"	"
Ge	265. 2	259. 3	10	20	"	"
Hf	307. 3	286. 6	10	15	"	"
Hg	253. 7		6	10	"	″
In	303. 9	325. 6	10	20	"	"
Ir	208. 9	264. 0	10	20	″	"
K	766. 5	404. 4	10	15	"	″
La	550. 1	357. 4	12. 5	20	"	"
Li	670.8	610. 4	10	15	″	"
Mg	285. 2	202. 5	7. 5	15	"	"
Mn	279. 5	403. 1	5	15	"	"
Мо	313. 3	317. 0	10	20	"	"
Na	589. 0	330. 2	10	15	"	"
Nb	334. 9	358. 0	10	20	"	"
Ni	232. 0	341.5	10	15	"	"

TECHNICAL SPECIFICATIONS

Elements	Wave length (nm)		Rated Current		Life	Window
			Normal	Max	(mA•hrs)	material
Pb	217. 0	283. 3	7. 5	15	5000	Synthetic Quartz
Pd	244. 8	247. 6	10	20	"	"
Pt	265. 9	299. 8	10	20	"	"
Rb	780. 0	794. 8	10	15	"	"
Rh	343. 5	369. 2	10	20	"	"
Ru	349. 9	392. 5	10	20	"	"
Sb	217. 6	231. 2	10	20	"	"
Sc	391. 2	390. 7	7. 5	15	"	"
Se	196. 0	204. 0	12. 5	16	"	"
Si	251. 6	288. 2	10	20	"	"
Sn	224. 6	286. 3	10	15	"	"
Sr	460. 7		10	15	"	"
Та	271. 5	277. 6	10	20	"	"
Te	214. 3	225. 9	10	15	"	"
Ti	364. 3	365. 3	10	20	"	"
TI	276. 8	377. 6	10	15	"	. "
V	318. 4	385. 6	10	20	"	"
W	255. 1	400. 9	10	20	"	"
Υ	410. 2	407. 7	10	12	"	"
Yb	398. 8	346. 4	10	15	"	"
Zn	213. 9	307. 6	5	15	"	"
Zr	360. 1	468. 8	10	20	"	"
Ca-Mg			7. 5	15	"	"
Cd-Pb	1		10	15	"	"
Cd-Zn			10	20	"	"
Cu-Fe-Mn	Please refer to the		18	20	"	"
Cu-Mn-Si	above data of single		18	20	"	"
Cu-Fe-Ni	elements.		15	20	"	"
Fe-Mn-Ni	1		18	20	"	"
Cr-Cu-Mn	1		12	20	"	"
Cr-Cu-Fe-Mn-Ni	1		18	20	"	"
Co-Cr-Cu-Fe-Mn-Ni	1		18	20	"	"

DUE TO CONTINUOUS PRODUCT IMPROVEMENT, THE DESIGN AND TECHNICAL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT PRIOR NOTICE

TASHIKA BOEKI SHOKAI K.K.

1-12, Kaiyo-cho, Ashiya 659-0035, Japan Tel: + 81-797-23-9035 Fax: + 81-797-23-2105

e-mail: sales@ tashika.co.jp URL: www.tashika.co.jp