DIGITAL CONTROLLER

BASIC FEATURES

Multi-input and multi-range performanceLarge 20mm bright display (SR93)Readable from a distance and in a low light area2-output heating and cooling control availableRS232C or RS485 Interface available\square Dust and splash proof front panel equivalent to IP66
$\square A$ wide selection of additional functions (optional) is available to suit various needs.

- Display

- Digital display:
- Display accuracy:

Measured value (PV)/7 segments red LED
4 digits
Target set value (SV)/7 segments green LED 4 digits
$\pm(0.3 \% \mathrm{FS}+1$ digit $)$
Excluding reference contact temperature compensation accuracy of thermocouple input.
Accuracy of readings lower than $-100^{\circ} \mathrm{C}$ of thermocouples $\mathrm{K}, \mathrm{T}, \mathrm{U}$ inputs is $\pm 0.7 \% \mathrm{FS}$.
Accuracy guarantee not applicable to
$400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right)$ and below of B
thermocouple.

- Display accuracy maintaining range:
$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(18 \sim 28^{\circ} \mathrm{C}\right)$
- Display resolution: \quad Depends on measuring range ($0.001,0.01$, 0.1 and 1)
- Measured value display range: $-10 \% \sim 110 \%$ of measuring range
- Display updating cycle: 0.25 seconds
- Action display/color: 7 type, LED lamp display

Control output (OUT1, OUT2)/Green
Event (EV1, EV2)/Orange
Auto tuning/Green
Manual control output (MAN)/Green
Set value bias, communication
(SB/COM)/Green
■ Setting

- Setting method:
- Target value setting range: Same as measuring range (within setting limiter)
- Setting limiter:

■ Input

- Type of input:
- Thermocouple:

Input impedance:
External resistance tolerance:
Burnout function:
Reference junction compensation accuracy:
$\pm 1^{\circ} \mathrm{C}$ (within the accuracy maintaining range ($23 \pm 5^{\circ} \mathrm{C}$)) $\pm 2^{\circ} \mathrm{C}$ (between 5 and $45^{\circ} \mathrm{C}$ of ambient temperature)
Pt100/JPt100, 3-wire type
0.25 mA
5Ω maximum/wire (3 lead wires should have the same resistance.)
Normal current:
Lead wire tolerance:

- Voltage mV :

V:
Input impedance:

- Current mA:

Receiving impedance:

- Input scaling function:

Scaling range:
Span:
Position of decimal point:

- Sampling cycle:
- PV bias:
- PV filter:
- Isolation:

- Control

- Control mode

With 1 output: Expert PID control with auto tuning function RA (reverse action characteristic): Heating action DA (direct action characteristic): Cooling action
With 2 outputs: Expert PID control with auto tuning function + PID control
PID (output 1) + PID (output 2)
$-1 \sim 1,0 \sim 1,0 \sim 2,0 \sim 5,1 \sim 5,0 \sim 10 \bigvee$
$500 \mathrm{k} \Omega$ minimum
0~20, 4~20mA DC
250Ω
Scaling possible for voltage (mV, V) or current (mA) input
-1999~9999 counts
10~5000 counts
None, 1, 2 and 3 digits on the right of decimal point
0.25 seconds
-1999~2000 units
$0 \sim 100$ seconds
Control input not insulated from system, set value bias, and CT input but insulated from others

RA (reverse action characteristic): Heating action
(OUT1) and cooling action (OUT2)
DA (direct characteristic): 2-stage heating action

- Type of control/rating: Contact/1a 240 V AC 2 A (resistive load) 1.2 A (inductive load)
(Common to Output 1 and 2): SSR drive voltage $/ 12 \mathrm{~V} \pm 1.5 \mathrm{~V}$ DC
(Maximum load current 30 mA)
Current/4~20mA DC (Maximum load
resistance 600Ω)
Voltage/0~10V DC (Maximum load current 2mA)
- Control output resolution: Control output 1: approx. 0.0125% ($1 / 8000$)

Control output 2: approx. $0.5 \% ~(1 / 200)$

- Control output 1

Proportional band (P):
Integral time (I):
Derivative time (D):
Set value function:
ON-OFF hysteresis:
Manual reset:
Higher/lower limit output limiter:
OFF, 0.1~999.9\% (ON-OFF action by OFF)
OFF, 1~6000 seconds
(P or PD action by OFF)
OFF, 1~3600 seconds
(P or PI action by OFF)
OFF, 0.01~1.00
1~999 units (Effective when $\mathrm{P}=\mathrm{OFF}$)
$-50.0 \sim 50.0 \%$ (Effective when I=OFF)
Lower limit 0.0~99.9\%, higher limit
$0.1 \sim 100.0 \%$ (Lower limit value < Higher limit value)
Proportional cycle: $\quad 1 \sim 120$ seconds (for contact and SSR drive voltage output)

- Control output 2 (option) Proportional band (P):

Integral time (I):
Derivative time (D):
Set value function:
ON-OFF hysteresis: Dead band:

OFF, 0.1~999.9\%
(ON-OFF action by OFF)
OFF, 1~6000 seconds
(P or PD action by OFF)
OFF, 1~3600 seconds
(P or PI action by OFF)
OFF, 0.01~1.00
1~999 units (Effective when $\mathrm{P}=\mathrm{OFF}$)
-1999~5000 units (Overlap with a negative value)
Higher/lower limit output limiter: Lower limit 0.0~99.9\%, higher limit 0.1~100.0\% (Lower limit value < Higher limit value)
Proportional cycle: $\quad 1 \sim 120$ seconds (for contact and SSR drive voltage output)

- Manual control

Output setting range: $\quad 0.0 \sim 100.0 \%$
Setting resolution:
Manual \leftrightarrow auto switching: Balanceless bumpless (within proportional range)

- Soft start: OFF, 1~100 seconds
- AT point: SV value in execution
- Control output characteristic: RA (reverse action characteristic)/DA
(direct action characteristic) switching by front key or communication
- Isolation:

RA (heating/cooling)/DA (2 stage heating)
Contact output isolated from all.
Analog output not insulated from SSR drive
voltage, current and voltage but insulated
from others. (In case another output is also
SSR drive voltage, current or voltage,
two outputs are not insulated from
each other.)

■ Event output (option)

- Number of event points: 2 points of EV1 and EV2
- Types:

Selectable from the following 9 types for EV1 and EV2:

ary No selection

Hod igher limit deviation
L $\boldsymbol{\sigma}^{\prime}$ Lower limit deviation
OU Outside higher/lower limit deviations

- $\boldsymbol{\sigma}^{\prime} \mathrm{W}$ ithin higher/lower limit deviations

MH igher limit absolute value
\& 8 Lower limit absolute value
50 Scaleover
His Heater break/loop alarm
Event setting range:
Absolute values (both higher limit and lower limit): Within measuring range Deviations (both higher limit and lower limit): -1999~2000 units
Higher/lower limit deviations
(within/outside): 0~2000 units

- Event action:	ON-OFF action
- Hysteresis:	1~999 units
- Standby action:	Selectable from the following 4 types
EV1 and EV2:	1 Without standby action.
	2 Standby when power is applied.
	3 Standby when power is applied and when SV value in execution is changed.
	4 Control mode without standby action (No alarm is output at the time of abnormal input).
- Output type/rating:	Contact ($1 \mathrm{a} \times 2$ points common) $/ 240 \mathrm{~V} \mathrm{AC}$ 1A (resistive load)
- Output updating cycle:	0.25 seconds
- Heater break/heater loo	p alarm (option)
Break/loop detection only for contact or SSR drive voltag	or OUT1 (Selectable when output type is e)
- Current capacity:	$30 \mathrm{~A}, 50 \mathrm{~A}$ to be designated when CT is ordered.
- Alarm action:	Heater current is detected by external CT provided as an accessory.
	When heater break is detected while control output is $\mathrm{ON}=$ Alarm output ON
	When heater loop alarm is detected while control output is OFF=Alarm output ON
- Current setting range:	OFF, 0.1~50.0A (Alarm action is stopped by setting OFF)
- Setting resolution:	0.1 A
- Current display range:	0.0~55.0A
- Display accuracy:	$\pm 2.0 \mathrm{~A}$ (Sine wave at 50 Hz)
- Minimum time to identify action:	0.25 seconds (every 0.5 seconds) common to ON and OFF
- Alarm retention mode:	Selectable from lock (to retain) and real (not to retain).
- Standby action:	Selectable from without (OFF) and with (ON).
- Sampling cycle:	0.5 seconds
- Isolation:	CT input not insulated from system and other inputs but insulated from the others.
■ Set value bias (option)	
- Setting range:	-1999~5000 units
- Action input:	Non-voltage contact or open collector (level action) about 5 V DC, 1 mA maximum
- Minimum level retention time:	0.15 seconds
- Isolation:	Action input not insulated from system and other inputs but insulated from others
■ Communication functio	n (option)
- Type of communication:	RS-232C, RS-485
- Communication system:	RS-232C 3-line type half duplex system RS-485 2-line type half duplex system \{RS-485 is of half-duplex multi-drop (bus) system $\}$
- Synchronization system:	Start-stop synchronization system
- Communication distance:	RS-232C The longest: 15 m
	RS-485 The longest 500 m (depending on conditions)
- Communication speed:	1200, 2400, 4800, 9600, 19200 bps
- Data format:	7 bits, even parity, 1 stop bit or 8 bits, non-parity, 1 stop bit
- Communication address:	1~255
- Communication memory mode:	EEP/RAM/r_E
- Communication BCC:	Add/Add two's cmp/XOR/None
- Communication delay time:	: 1~100 ($\times 0.512 \mathrm{msec}$)
- Communication code:	ASCII code
- Communication protocol:	Shimaden's standard protocol
- Number of connectable inst	truments:
	RS-232 1
	RS-485 up to 31
- Isolation:	Communication signals insulated from system, each input and each output.

action
Selectable from the following 4 types
1 Without standby action.
Standby when power is applied.
3 Standby when power is applied and 4 Control mode without standby action (No alarm is output at the time of abnormal input).
Contact ($1 \mathrm{a} \times 2$ points common)/240V AC 1 A (resistive load)

- Output updating cycle:
- Heater break/heater loop alarm (option)

Break/loop detection only for OUT1 (Selectable when output type is contact or SSR drive voltage)

- Alarm action:
- Current setting range:

resolution:

Current display range

- Display accuracy:

Minimum time to identify action:

- Alarm retention mode:
- Standby action:
- Sampling cycle:

Isolation:

- Set value bias (option)

Setting range:

- Minimum level retention time:
- Isolation:
- Communication function (option)
- Type of communication:
- Communication system:

RS-232C 3-line type half duplex system 2-line type half duplex syste (RS-485 is of half-duplex multi-drop (bus) system $\}$

- Synchronization system: Start-stop synchronization system
- Communication distance: RS-232C The longest: 15 m

RS-485 The longest 500 m (depending on
1200, 2400, 4800, 9600, 19200 bp
7 bits, even parity, 1 stop bit or
8 bits, non-parity, 1 stop bit
255

- Communication memory mode: EEP/RAM/r_E
- Communication BCC:

Add/Add two's cmp/XOR/None

- Communication code: ASCII code
- Communication protocol: Shimaden's standard protocol

RS-232 1
RS-485 up to 31
system, each input and each output

■ Analog output (option)

- Number of output points: 1 point
- Type of analog output: Selectable from measured value, target value (SV in execution), control output 1 and control output 2 .
- Output signal/rating: $\quad 4 \sim 20 \mathrm{~mA} \mathrm{DC/Maximum} \mathrm{load} \mathrm{resistance} 300 \Omega$ $0 \sim 10 \mathrm{~V}$ DC/Maximum load current 2 mA $0 \sim 10 \mathrm{mV}$ DC/Output resistance 10Ω Measured value, target value: Within measuring range (inversed scaling possible) Control output 1 and $20.0 \sim 100.0 \%$ (inversed scaling possible)
- Output accuracy:
- Output resolution:
- Output updating cycle:
- Isolation:

- General specifications

- Data storage: $\pm 0.3 \% \mathrm{FS}$ (with respect to displayed value) Approx. 0.01% (1/10000) 0.25 seconds

Analog output insulated from system and inputs but not insulated from control output except contact output.

- Environmental conditions for instrument operation:

Temperature: $\quad-10 \sim 50^{\circ} \mathrm{C}$
Humidity: $\quad 90 \%$ RH or less (no dew condensation)
Height:
Category:
Degree of pollution:

- Storage temperature:
- Supply voltage:
- Power consumption: II
2
$-20 \sim 65^{\circ} \mathrm{C}$
Either $100-240 \mathrm{~V}$ AC $\pm 10 \% 50 / 60 \mathrm{~Hz}$ or $24 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \pm 10 \%$ to be designated. SR91: 100-240VAC 11VA maximum for

AC; 6W for DC $24 \mathrm{~V} ; 7 \mathrm{VA}$ for AC 24 V
SR92, SR93 and SR94: 100-240VAC
15 VA maximum for $\mathrm{AC} ; 8 \mathrm{~W}$ for DC
24 V ; 9VA for AC 24 V

- Input/noise removal ratio: 50 dB or higher in normal mode ($50 / 60 \mathrm{~Hz}$)

130 dB or higher in common mode ($50 / 60 \mathrm{~Hz}$)

- Applicable standards: Safety: IEC1010 and EN61010-1

EMC: EN61326

- Insulation resistance:

Between input/output terminals and power terminal 500 V DC $20 \mathrm{M} \Omega$ or above; Between input/output terminals and protective conductor terminal 500 V DC $20 \mathrm{M} \Omega$ or above

- Dielectric strength: Between input/output terminals and power terminal 2300 V AC/minute; Between power terminal and protective conductor terminal 1500 V AC/minute
- Protective structure: Only front panel has dust-proof and drip-
- Material of case:
- External dimensions: proof structure equivalent to IP66.
PPO resin molding (equivalent to UL94V-1)

SR91: H48 \times W48 \times D111 (Panel depth: 100) mm
SR92: H72 \times W72 \times D111 (Panel depth: 100) mm
SR93: H96 \times W96 \times D111 (Panel depth: 100) mm

- Mounting:
- Panel thickness:
- Panel cutout:
- Weight:

SR94: H96 \times W48 \times D111 (Panel depth: 100) mm
Push-in panel (one-touch mount)
$1.0 \sim 4.0 \mathrm{~mm}$
SR91: H45 \times W45 mm
SR92: H68 \times W68 mm
SR93: H92 \times W92 mm
SR94: H92 \times W45 mm
SR91: Approximately 170 g
SR92: Approximately 280 g
SR93: Approximately 330 g
SR94: Approximately 240 g

Note:
When you purchase a two-output type controller and use it in a one output capacity, larger overshooting or undershooting may happen as a result of integral operation. Therefore, we recommend you to choose a one-output type.
The cause of the above-mentioned problem is that the positional relationship between the proportional band (PB) and the set value (SV) of a one-output type controller differs from that of a two-output type.

Note:
When you purchase a two-output type controller and use it in a one output capacity, larger overshooting or undershooting may happen as a result of integral operation. Therefore, we recommend you to choose a one-output type.
The cause of the above-mentioned problem is that the positional relationship between the proportional band (PB) and the set value (SV) of a one-output type controller differs from that of a two-output type.

SR92

SR93 AND SR94

External Dimensions
Panel Cutout
Terminal Arrangement (Common)
-SR93

- SR94

TERMINAL COVER (AVAILABLE SEPARATELY)

Model		Mounting
SR91	QCR001	One-touch mount
SR92	QCR002	One-touch mount
SR93	QCR003	One-touch mount

Material/Appearance: PVC/transparent
Thickness: 1 mm

Model		Mounting
SR94	QCR004	Plus screw, B tight,
	(Individual mounting)	M2.3 $\times 6-2$ pcs.
	QCR005	Plus screw, B tight,
	(Tight-lock coupling)	M2.3 $\times 6-4$ pcs.

Material/Appearance: PVC/transparent Thickness: 1 mm

\. Warning

- The SR90 series is designed for the control of temperature, humidity and other physical values of general industrial equipment. (It is not to be used for any purpose which regulates the prevention of serious effects on human life or safety.)

!. Caution

- If the possibility of loss or damage to your system or property as a result of failure of any part of the process exists, proper safety measures must be made before the instrument is put into use so as to prevent the occurrence of trouble.

ISO 9001

